ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Unicode version

Theorem eldmrexrn 5329
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5319 . . 3  |-  ( ( Fun  F  /\  Y  e.  dom  F )  -> 
( F `  Y
)  e.  ran  F
)
2 eqid 2081 . . 3  |-  ( F `
 Y )  =  ( F `  Y
)
3 eqeq1 2087 . . . 4  |-  ( x  =  ( F `  Y )  ->  (
x  =  ( F `
 Y )  <->  ( F `  Y )  =  ( F `  Y ) ) )
43rspcev 2701 . . 3  |-  ( ( ( F `  Y
)  e.  ran  F  /\  ( F `  Y
)  =  ( F `
 Y ) )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
51, 2, 4sylancl 404 . 2  |-  ( ( Fun  F  /\  Y  e.  dom  F )  ->  E. x  e.  ran  F  x  =  ( F `
 Y ) )
65ex 113 1  |-  ( Fun 
F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   E.wrex 2349   dom cdm 4363   ran crn 4364   Fun wfun 4916   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator