ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4097
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4047 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 130 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2193 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2604 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2152 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3081 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 3916 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2418 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4088 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 144 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   {cab 2067   A.wral 2348   {crab 2352   _Vcvv 2601   class class class wbr 3785    _E cep 4042   Se wse 4084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-eprel 4044  df-se 4088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator