![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 |
![]() ![]() ![]() ![]() |
ssexi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssexi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | ssexi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | ssex 3915 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 7 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 |
This theorem is referenced by: zfausab 3920 pp0ex 3960 ord3ex 3961 epse 4097 opabex 5406 oprabex 5775 phplem2 6339 phpm 6351 niex 6502 enqex 6550 enq0ex 6629 npex 6663 ltnqex 6739 gtnqex 6740 recexprlemell 6812 recexprlemelu 6813 enrex 6914 axcnex 7027 peano5nnnn 7058 reex 7107 nnex 8045 zex 8360 qex 8717 ixxex 8922 frecuzrdgrrn 9410 frec2uzrdg 9411 frecuzrdgrom 9412 frecuzrdgsuc 9417 resqrexlemf 9893 resqrexlemf1 9894 resqrexlemfp1 9895 iserclim0 10144 climle 10172 prmex 10495 |
Copyright terms: Public domain | W3C validator |