ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq1 Unicode version

Theorem ereq1 6136
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4440 . . 3  |-  ( R  =  S  ->  ( Rel  R  <->  Rel  S ) )
2 dmeq 4553 . . . 4  |-  ( R  =  S  ->  dom  R  =  dom  S )
32eqeq1d 2089 . . 3  |-  ( R  =  S  ->  ( dom  R  =  A  <->  dom  S  =  A ) )
4 cnveq 4527 . . . . . 6  |-  ( R  =  S  ->  `' R  =  `' S
)
5 coeq1 4511 . . . . . . 7  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  R ) )
6 coeq2 4512 . . . . . . 7  |-  ( R  =  S  ->  ( S  o.  R )  =  ( S  o.  S ) )
75, 6eqtrd 2113 . . . . . 6  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  S ) )
84, 7uneq12d 3127 . . . . 5  |-  ( R  =  S  ->  ( `' R  u.  ( R  o.  R )
)  =  ( `' S  u.  ( S  o.  S ) ) )
98sseq1d 3026 . . . 4  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  R )
)
10 sseq2 3021 . . . 4  |-  ( R  =  S  ->  (
( `' S  u.  ( S  o.  S
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
119, 10bitrd 186 . . 3  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
121, 3, 113anbi123d 1243 . 2  |-  ( R  =  S  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S )
)  C_  S )
) )
13 df-er 6129 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
14 df-er 6129 . 2  |-  ( S  Er  A  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S ) ) 
C_  S ) )
1512, 13, 143bitr4g 221 1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    /\ w3a 919    = wceq 1284    u. cun 2971    C_ wss 2973   `'ccnv 4362   dom cdm 4363    o. ccom 4367   Rel wrel 4368    Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-er 6129
This theorem is referenced by:  riinerm  6202
  Copyright terms: Public domain W3C validator