| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ereq1 | Unicode version | ||
| Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq 4440 |
. . 3
| |
| 2 | dmeq 4553 |
. . . 4
| |
| 3 | 2 | eqeq1d 2089 |
. . 3
|
| 4 | cnveq 4527 |
. . . . . 6
| |
| 5 | coeq1 4511 |
. . . . . . 7
| |
| 6 | coeq2 4512 |
. . . . . . 7
| |
| 7 | 5, 6 | eqtrd 2113 |
. . . . . 6
|
| 8 | 4, 7 | uneq12d 3127 |
. . . . 5
|
| 9 | 8 | sseq1d 3026 |
. . . 4
|
| 10 | sseq2 3021 |
. . . 4
| |
| 11 | 9, 10 | bitrd 186 |
. . 3
|
| 12 | 1, 3, 11 | 3anbi123d 1243 |
. 2
|
| 13 | df-er 6129 |
. 2
| |
| 14 | df-er 6129 |
. 2
| |
| 15 | 12, 13, 14 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-er 6129 |
| This theorem is referenced by: riinerm 6202 |
| Copyright terms: Public domain | W3C validator |