| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnveq | Unicode version | ||
| Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 4526 |
. . 3
| |
| 2 | cnvss 4526 |
. . 3
| |
| 3 | 1, 2 | anim12i 331 |
. 2
|
| 4 | eqss 3014 |
. 2
| |
| 5 | eqss 3014 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 df-br 3786 df-opab 3840 df-cnv 4371 |
| This theorem is referenced by: cnveqi 4528 cnveqd 4529 rneq 4579 cnveqb 4796 funcnvuni 4988 f1eq1 5107 f1o00 5181 foeqcnvco 5450 tposfn2 5904 ereq1 6136 infeq3 6428 |
| Copyright terms: Public domain | W3C validator |