| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq3dc | Unicode version | ||
| Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.) |
| Ref | Expression |
|---|---|
| eueq3dc.1 |
|
| eueq3dc.2 |
|
| eueq3dc.3 |
|
| eueq3dc.4 |
|
| Ref | Expression |
|---|---|
| eueq3dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcor 876 |
. 2
| |
| 2 | df-dc 776 |
. . 3
| |
| 3 | eueq3dc.1 |
. . . . . . 7
| |
| 4 | 3 | eueq1 2764 |
. . . . . 6
|
| 5 | ibar 295 |
. . . . . . . . 9
| |
| 6 | pm2.45 689 |
. . . . . . . . . . . . 13
| |
| 7 | eueq3dc.4 |
. . . . . . . . . . . . . . 15
| |
| 8 | 7 | imnani 657 |
. . . . . . . . . . . . . 14
|
| 9 | 8 | con2i 589 |
. . . . . . . . . . . . 13
|
| 10 | 6, 9 | jaoi 668 |
. . . . . . . . . . . 12
|
| 11 | 10 | con2i 589 |
. . . . . . . . . . 11
|
| 12 | 6 | con2i 589 |
. . . . . . . . . . . . 13
|
| 13 | 12 | bianfd 889 |
. . . . . . . . . . . 12
|
| 14 | 8 | bianfd 889 |
. . . . . . . . . . . 12
|
| 15 | 13, 14 | orbi12d 739 |
. . . . . . . . . . 11
|
| 16 | 11, 15 | mtbid 629 |
. . . . . . . . . 10
|
| 17 | biorf 695 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 5, 18 | bitrd 186 |
. . . . . . . 8
|
| 20 | 3orrot 925 |
. . . . . . . . 9
| |
| 21 | df-3or 920 |
. . . . . . . . 9
| |
| 22 | 20, 21 | bitri 182 |
. . . . . . . 8
|
| 23 | 19, 22 | syl6bbr 196 |
. . . . . . 7
|
| 24 | 23 | eubidv 1949 |
. . . . . 6
|
| 25 | 4, 24 | mpbii 146 |
. . . . 5
|
| 26 | eueq3dc.3 |
. . . . . . 7
| |
| 27 | 26 | eueq1 2764 |
. . . . . 6
|
| 28 | ibar 295 |
. . . . . . . . 9
| |
| 29 | 8 | adantr 270 |
. . . . . . . . . . . 12
|
| 30 | pm2.46 690 |
. . . . . . . . . . . . 13
| |
| 31 | 30 | adantr 270 |
. . . . . . . . . . . 12
|
| 32 | 29, 31 | jaoi 668 |
. . . . . . . . . . 11
|
| 33 | 32 | con2i 589 |
. . . . . . . . . 10
|
| 34 | biorf 695 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | 28, 35 | bitrd 186 |
. . . . . . . 8
|
| 37 | df-3or 920 |
. . . . . . . 8
| |
| 38 | 36, 37 | syl6bbr 196 |
. . . . . . 7
|
| 39 | 38 | eubidv 1949 |
. . . . . 6
|
| 40 | 27, 39 | mpbii 146 |
. . . . 5
|
| 41 | 25, 40 | jaoi 668 |
. . . 4
|
| 42 | eueq3dc.2 |
. . . . . 6
| |
| 43 | 42 | eueq1 2764 |
. . . . 5
|
| 44 | ibar 295 |
. . . . . . . 8
| |
| 45 | simpl 107 |
. . . . . . . . . . 11
| |
| 46 | simpl 107 |
. . . . . . . . . . 11
| |
| 47 | 45, 46 | orim12i 708 |
. . . . . . . . . 10
|
| 48 | 47 | con3i 594 |
. . . . . . . . 9
|
| 49 | biorf 695 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 44, 50 | bitrd 186 |
. . . . . . 7
|
| 52 | 3orcomb 928 |
. . . . . . . 8
| |
| 53 | df-3or 920 |
. . . . . . . 8
| |
| 54 | 52, 53 | bitri 182 |
. . . . . . 7
|
| 55 | 51, 54 | syl6bbr 196 |
. . . . . 6
|
| 56 | 55 | eubidv 1949 |
. . . . 5
|
| 57 | 43, 56 | mpbii 146 |
. . . 4
|
| 58 | 41, 57 | jaoi 668 |
. . 3
|
| 59 | 2, 58 | sylbi 119 |
. 2
|
| 60 | 1, 59 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: moeq3dc 2768 |
| Copyright terms: Public domain | W3C validator |