| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euequ1 | Unicode version | ||
| Description: Equality has existential uniqueness. (Contributed by Stefan Allan, 4-Dec-2008.) |
| Ref | Expression |
|---|---|
| euequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1626 |
. 2
| |
| 2 | equtr2 1637 |
. . 3
| |
| 3 | 2 | gen2 1379 |
. 2
|
| 4 | equequ1 1638 |
. . 3
| |
| 5 | 4 | eu4 2003 |
. 2
|
| 6 | 1, 3, 5 | mpbir2an 883 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: copsexg 3999 oprabid 5557 |
| Copyright terms: Public domain | W3C validator |