ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfr2dc Unicode version

Theorem euxfr2dc 2777
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2dc.1  |-  A  e. 
_V
euxfr2dc.2  |-  E* y  x  =  A
Assertion
Ref Expression
euxfr2dc  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y ph ) )
Distinct variable groups:    ph, x    x, A
Allowed substitution hints:    ph( y)    A( y)

Proof of Theorem euxfr2dc
StepHypRef Expression
1 euxfr2dc.2 . . . . . . 7  |-  E* y  x  =  A
21moani 2011 . . . . . 6  |-  E* y
( ph  /\  x  =  A )
3 ancom 262 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  <->  ( x  =  A  /\  ph )
)
43mobii 1978 . . . . . 6  |-  ( E* y ( ph  /\  x  =  A )  <->  E* y ( x  =  A  /\  ph )
)
52, 4mpbi 143 . . . . 5  |-  E* y
( x  =  A  /\  ph )
65ax-gen 1378 . . . 4  |-  A. x E* y ( x  =  A  /\  ph )
7 excom 1594 . . . . . 6  |-  ( E. y E. x ( x  =  A  /\  ph )  <->  E. x E. y
( x  =  A  /\  ph ) )
87dcbii 780 . . . . 5  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  <-> DECID  E. x E. y ( x  =  A  /\  ph )
)
9 2euswapdc 2032 . . . . 5  |-  (DECID  E. x E. y ( x  =  A  /\  ph )  ->  ( A. x E* y ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) ) )
108, 9sylbi 119 . . . 4  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( A. x E* y ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) ) )
116, 10mpi 15 . . 3  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) )
12 moeq 2767 . . . . . . 7  |-  E* x  x  =  A
1312moani 2011 . . . . . 6  |-  E* x
( ph  /\  x  =  A )
143mobii 1978 . . . . . 6  |-  ( E* x ( ph  /\  x  =  A )  <->  E* x ( x  =  A  /\  ph )
)
1513, 14mpbi 143 . . . . 5  |-  E* x
( x  =  A  /\  ph )
1615ax-gen 1378 . . . 4  |-  A. y E* x ( x  =  A  /\  ph )
17 2euswapdc 2032 . . . 4  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( A. y E* x ( x  =  A  /\  ph )  ->  ( E! y E. x ( x  =  A  /\  ph )  ->  E! x E. y
( x  =  A  /\  ph ) ) ) )
1816, 17mpi 15 . . 3  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! y E. x ( x  =  A  /\  ph )  ->  E! x E. y
( x  =  A  /\  ph ) ) )
1911, 18impbid 127 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y E. x ( x  =  A  /\  ph ) ) )
20 euxfr2dc.1 . . . 4  |-  A  e. 
_V
21 biidd 170 . . . 4  |-  ( x  =  A  ->  ( ph 
<-> 
ph ) )
2220, 21ceqsexv 2638 . . 3  |-  ( E. x ( x  =  A  /\  ph )  <->  ph )
2322eubii 1950 . 2  |-  ( E! y E. x ( x  =  A  /\  ph )  <->  E! y ph )
2419, 23syl6bb 194 1  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 775   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   E!weu 1941   E*wmo 1942   _Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by:  euxfrdc  2778
  Copyright terms: Public domain W3C validator