| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1dmvrnfibi | Unicode version | ||
| Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6394. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| f1dmvrnfibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1rel 5115 |
. . . 4
| |
| 2 | 1 | ad2antlr 472 |
. . 3
|
| 3 | f1cnv 5170 |
. . . . 5
| |
| 4 | f1ofun 5148 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | ad2antlr 472 |
. . 3
|
| 7 | simpr 108 |
. . 3
| |
| 8 | funrnfi 6392 |
. . 3
| |
| 9 | 2, 6, 7, 8 | syl3anc 1169 |
. 2
|
| 10 | simpr 108 |
. . . 4
| |
| 11 | f1dm 5116 |
. . . . . . . 8
| |
| 12 | f1f1orn 5157 |
. . . . . . . 8
| |
| 13 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 14 | f1oeq2 5138 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | anbi12d 456 |
. . . . . . . . . . 11
|
| 16 | 15 | eqcoms 2084 |
. . . . . . . . . 10
|
| 17 | 16 | biimpd 142 |
. . . . . . . . 9
|
| 18 | 17 | expcomd 1370 |
. . . . . . . 8
|
| 19 | 11, 12, 18 | sylc 61 |
. . . . . . 7
|
| 20 | 19 | impcom 123 |
. . . . . 6
|
| 21 | 20 | adantr 270 |
. . . . 5
|
| 22 | f1oeng 6260 |
. . . . 5
| |
| 23 | 21, 22 | syl 14 |
. . . 4
|
| 24 | enfii 6359 |
. . . 4
| |
| 25 | 10, 23, 24 | syl2anc 403 |
. . 3
|
| 26 | f1fun 5114 |
. . . . 5
| |
| 27 | 26 | ad2antlr 472 |
. . . 4
|
| 28 | fundmfibi 6390 |
. . . 4
| |
| 29 | 27, 28 | syl 14 |
. . 3
|
| 30 | 25, 29 | mpbird 165 |
. 2
|
| 31 | 9, 30 | impbida 560 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-1st 5787 df-2nd 5788 df-1o 6024 df-er 6129 df-en 6245 df-fin 6247 |
| This theorem is referenced by: f1vrnfibi 6394 |
| Copyright terms: Public domain | W3C validator |