ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvb Unicode version

Theorem f1ocnvb 5160
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 5159 . 2  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1ocnv 5159 . . 3  |-  ( `' F : B -1-1-onto-> A  ->  `' `' F : A -1-1-onto-> B )
3 dfrel2 4791 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
4 f1oeq1 5137 . . . 4  |-  ( `' `' F  =  F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A -1-1-onto-> B ) )
53, 4sylbi 119 . . 3  |-  ( Rel 
F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A
-1-1-onto-> B ) )
62, 5syl5ib 152 . 2  |-  ( Rel 
F  ->  ( `' F : B -1-1-onto-> A  ->  F : A
-1-1-onto-> B ) )
71, 6impbid2 141 1  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284   `'ccnv 4362   Rel wrel 4368   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator