ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orel Unicode version

Theorem f1orel 5149
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1orel  |-  ( F : A -1-1-onto-> B  ->  Rel  F )

Proof of Theorem f1orel
StepHypRef Expression
1 f1ofun 5148 . 2  |-  ( F : A -1-1-onto-> B  ->  Fun  F )
2 funrel 4939 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4368   Fun wfun 4916   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929
This theorem is referenced by:  f1ococnv1  5175  isores1  5474  dif1en  6364
  Copyright terms: Public domain W3C validator