ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores1 Unicode version

Theorem isores1 5474
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 5471 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 isores2 5473 . . . . 5  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
31, 2sylib 120 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A
) ) ( B ,  A ) )
4 isocnv 5471 . . . 4  |-  ( `' H  Isom  S , 
( R  i^i  ( A  X.  A ) ) ( B ,  A
)  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
53, 4syl 14 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
6 isof1o 5467 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
7 f1orel 5149 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Rel  H )
8 dfrel2 4791 . . . . 5  |-  ( Rel 
H  <->  `' `' H  =  H
)
9 isoeq1 5461 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
108, 9sylbi 119 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
116, 7, 103syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
125, 11mpbid 145 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
13 isocnv 5471 . . . . 5  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
1413, 2sylibr 132 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  R  ( B ,  A ) )
15 isocnv 5471 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
1614, 15syl 14 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
17 isof1o 5467 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H : A
-1-1-onto-> B )
18 isoeq1 5461 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( A ,  B ) ) )
198, 18sylbi 119 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2017, 7, 193syl 17 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2116, 20mpbid 145 . 2  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H  Isom  R ,  S  ( A ,  B ) )
2212, 21impbii 124 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284    i^i cin 2972    X. cxp 4361   `'ccnv 4362   Rel wrel 4368   -1-1-onto->wf1o 4921    Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator