ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oun Unicode version

Theorem f1oun 5166
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
f1oun  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )

Proof of Theorem f1oun
StepHypRef Expression
1 dff1o4 5154 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
2 dff1o4 5154 . . . 4  |-  ( G : C -1-1-onto-> D  <->  ( G  Fn  C  /\  `' G  Fn  D ) )
3 fnun 5025 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
43ex 113 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  C )  ->  ( ( A  i^i  C )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  C
) ) )
5 fnun 5025 . . . . . . . 8  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
6 cnvun 4749 . . . . . . . . 9  |-  `' ( F  u.  G )  =  ( `' F  u.  `' G )
76fneq1i 5013 . . . . . . . 8  |-  ( `' ( F  u.  G
)  Fn  ( B  u.  D )  <->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
85, 7sylibr 132 . . . . . . 7  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  `' ( F  u.  G )  Fn  ( B  u.  D ) )
98ex 113 . . . . . 6  |-  ( ( `' F  Fn  B  /\  `' G  Fn  D
)  ->  ( ( B  i^i  D )  =  (/)  ->  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
104, 9im2anan9 562 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( `' F  Fn  B  /\  `' G  Fn  D
) )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
1110an4s 552 . . . 4  |-  ( ( ( F  Fn  A  /\  `' F  Fn  B
)  /\  ( G  Fn  C  /\  `' G  Fn  D ) )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G )  Fn  ( B  u.  D )
) ) )
121, 2, 11syl2anb 285 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
13 dff1o4 5154 . . 3  |-  ( ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D
)  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
1412, 13syl6ibr 160 . 2  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
)
-1-1-onto-> ( B  u.  D
) ) )
1514imp 122 1  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    u. cun 2971    i^i cin 2972   (/)c0 3251   `'ccnv 4362    Fn wfn 4917   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929
This theorem is referenced by:  f1oprg  5188  unen  6316
  Copyright terms: Public domain W3C validator