ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco2 Unicode version

Theorem fco2 5077
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco2
StepHypRef Expression
1 fco 5076 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
) : A --> C )
2 frn 5072 . . . . 5  |-  ( G : A --> B  ->  ran  G  C_  B )
3 cores 4844 . . . . 5  |-  ( ran 
G  C_  B  ->  ( ( F  |`  B )  o.  G )  =  ( F  o.  G
) )
42, 3syl 14 . . . 4  |-  ( G : A --> B  -> 
( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
54adantl 271 . . 3  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
65feq1d 5054 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( ( F  |`  B )  o.  G ) : A --> C 
<->  ( F  o.  G
) : A --> C ) )
71, 6mpbid 145 1  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    C_ wss 2973   ran crn 4364    |` cres 4365    o. ccom 4367   -->wf 4918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-fun 4924  df-fn 4925  df-f 4926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator