| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq12d | Unicode version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 |
|
| feq12d.2 |
|
| Ref | Expression |
|---|---|
| feq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 |
. . 3
| |
| 2 | 1 | feq1d 5054 |
. 2
|
| 3 | feq12d.2 |
. . 3
| |
| 4 | 3 | feq2d 5055 |
. 2
|
| 5 | 2, 4 | bitrd 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 |
| This theorem is referenced by: feq123d 5057 smoeq 5928 |
| Copyright terms: Public domain | W3C validator |