ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 Unicode version

Theorem fr0 4106
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0  |-  R  Fr  (/)

Proof of Theorem fr0
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4087 . 2  |-  ( R  Fr  (/)  <->  A. sFrFor  R (/) s )
2 0ss 3282 . . . 4  |-  (/)  C_  s
32a1i 9 . . 3  |-  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
)
4 df-frfor 4086 . . 3  |-  (FrFor  R (/) s  <->  ( A. x  e.  (/)  ( A. y  e.  (/)  ( y R x  ->  y  e.  s )  ->  x  e.  s )  ->  (/)  C_  s
) )
53, 4mpbir 144 . 2  |- FrFor  R (/) s
61, 5mpgbir 1382 1  |-  R  Fr  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2348    C_ wss 2973   (/)c0 3251   class class class wbr 3785  FrFor wfrfor 4082    Fr wfr 4083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-frfor 4086  df-frind 4087
This theorem is referenced by:  we0  4116
  Copyright terms: Public domain W3C validator