| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frirrg | Unicode version | ||
| Description: A well-founded relation
is irreflexive. This is the case where |
| Ref | Expression |
|---|---|
| frirrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 108 |
. . . 4
| |
| 2 | simpl3 943 |
. . . 4
| |
| 3 | 1, 2 | sseldd 3000 |
. . 3
|
| 4 | neldifsnd 3520 |
. . 3
| |
| 5 | 3, 4 | pm2.65da 619 |
. 2
|
| 6 | simplr 496 |
. . . . . 6
| |
| 7 | simpll3 979 |
. . . . . . . . . 10
| |
| 8 | 7 | ad2antrr 471 |
. . . . . . . . 9
|
| 9 | simplr 496 |
. . . . . . . . 9
| |
| 10 | simplr 496 |
. . . . . . . . . . 11
| |
| 11 | 10 | ad2antrr 471 |
. . . . . . . . . 10
|
| 12 | simpr 108 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | breqtrrd 3811 |
. . . . . . . . 9
|
| 14 | breq1 3788 |
. . . . . . . . . . 11
| |
| 15 | eleq1 2141 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | imbi12d 232 |
. . . . . . . . . 10
|
| 17 | 16 | rspcv 2697 |
. . . . . . . . 9
|
| 18 | 8, 9, 13, 17 | syl3c 62 |
. . . . . . . 8
|
| 19 | neldifsnd 3520 |
. . . . . . . 8
| |
| 20 | 18, 19 | pm2.65da 619 |
. . . . . . 7
|
| 21 | velsn 3415 |
. . . . . . 7
| |
| 22 | 20, 21 | sylnibr 634 |
. . . . . 6
|
| 23 | 6, 22 | eldifd 2983 |
. . . . 5
|
| 24 | 23 | ex 113 |
. . . 4
|
| 25 | 24 | ralrimiva 2434 |
. . 3
|
| 26 | df-frind 4087 |
. . . . . . . 8
| |
| 27 | df-frfor 4086 |
. . . . . . . . 9
| |
| 28 | 27 | albii 1399 |
. . . . . . . 8
|
| 29 | 26, 28 | bitri 182 |
. . . . . . 7
|
| 30 | 29 | biimpi 118 |
. . . . . 6
|
| 31 | 30 | 3ad2ant1 959 |
. . . . 5
|
| 32 | difexg 3919 |
. . . . . . 7
| |
| 33 | eleq2 2142 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | imbi2d 228 |
. . . . . . . . . . . 12
|
| 35 | 34 | ralbidv 2368 |
. . . . . . . . . . 11
|
| 36 | eleq2 2142 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | imbi12d 232 |
. . . . . . . . . 10
|
| 38 | 37 | ralbidv 2368 |
. . . . . . . . 9
|
| 39 | sseq2 3021 |
. . . . . . . . 9
| |
| 40 | 38, 39 | imbi12d 232 |
. . . . . . . 8
|
| 41 | 40 | spcgv 2685 |
. . . . . . 7
|
| 42 | 32, 41 | syl 14 |
. . . . . 6
|
| 43 | 42 | 3ad2ant2 960 |
. . . . 5
|
| 44 | 31, 43 | mpd 13 |
. . . 4
|
| 45 | 44 | adantr 270 |
. . 3
|
| 46 | 25, 45 | mpd 13 |
. 2
|
| 47 | 5, 46 | mtand 623 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-frfor 4086 df-frind 4087 |
| This theorem is referenced by: efrirr 4108 wepo 4114 wetriext 4319 |
| Copyright terms: Public domain | W3C validator |