ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmeng Unicode version

Theorem fundmeng 6310
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )

Proof of Theorem fundmeng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funeq 4941 . . . 4  |-  ( x  =  F  ->  ( Fun  x  <->  Fun  F ) )
2 dmeq 4553 . . . . 5  |-  ( x  =  F  ->  dom  x  =  dom  F )
3 id 19 . . . . 5  |-  ( x  =  F  ->  x  =  F )
42, 3breq12d 3798 . . . 4  |-  ( x  =  F  ->  ( dom  x  ~~  x  <->  dom  F  ~~  F ) )
51, 4imbi12d 232 . . 3  |-  ( x  =  F  ->  (
( Fun  x  ->  dom  x  ~~  x )  <-> 
( Fun  F  ->  dom 
F  ~~  F )
) )
6 vex 2604 . . . 4  |-  x  e. 
_V
76fundmen 6309 . . 3  |-  ( Fun  x  ->  dom  x  ~~  x )
85, 7vtoclg 2658 . 2  |-  ( F  e.  V  ->  ( Fun  F  ->  dom  F  ~~  F ) )
98imp 122 1  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   class class class wbr 3785   dom cdm 4363   Fun wfun 4916    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-en 6245
This theorem is referenced by:  fndmeng  6312  fundmfi  6389
  Copyright terms: Public domain W3C validator