ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funss Unicode version

Theorem funss 4940
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )

Proof of Theorem funss
StepHypRef Expression
1 relss 4445 . . 3  |-  ( A 
C_  B  ->  ( Rel  B  ->  Rel  A ) )
2 coss1 4509 . . . . 5  |-  ( A 
C_  B  ->  ( A  o.  `' A
)  C_  ( B  o.  `' A ) )
3 cnvss 4526 . . . . . 6  |-  ( A 
C_  B  ->  `' A  C_  `' B )
4 coss2 4510 . . . . . 6  |-  ( `' A  C_  `' B  ->  ( B  o.  `' A )  C_  ( B  o.  `' B
) )
53, 4syl 14 . . . . 5  |-  ( A 
C_  B  ->  ( B  o.  `' A
)  C_  ( B  o.  `' B ) )
62, 5sstrd 3009 . . . 4  |-  ( A 
C_  B  ->  ( A  o.  `' A
)  C_  ( B  o.  `' B ) )
7 sstr2 3006 . . . 4  |-  ( ( A  o.  `' A
)  C_  ( B  o.  `' B )  ->  (
( B  o.  `' B )  C_  _I  ->  ( A  o.  `' A )  C_  _I  ) )
86, 7syl 14 . . 3  |-  ( A 
C_  B  ->  (
( B  o.  `' B )  C_  _I  ->  ( A  o.  `' A )  C_  _I  ) )
91, 8anim12d 328 . 2  |-  ( A 
C_  B  ->  (
( Rel  B  /\  ( B  o.  `' B )  C_  _I  )  ->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) ) )
10 df-fun 4924 . 2  |-  ( Fun 
B  <->  ( Rel  B  /\  ( B  o.  `' B )  C_  _I  ) )
11 df-fun 4924 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
129, 10, 113imtr4g 203 1  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    C_ wss 2973    _I cid 4043   `'ccnv 4362    o. ccom 4367   Rel wrel 4368   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  funeq  4941  funopab4  4957  funres  4961  fun0  4977  funcnvcnv  4978  funin  4990  funres11  4991  foimacnv  5164  tfrlemibfn  5965
  Copyright terms: Public domain W3C validator