| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foimacnv | Unicode version | ||
| Description: A reverse version of f1imacnv 5163. (Contributed by Jeff Hankins, 16-Jul-2009.) |
| Ref | Expression |
|---|---|
| foimacnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima 4661 |
. 2
| |
| 2 | fofun 5127 |
. . . . . 6
| |
| 3 | 2 | adantr 270 |
. . . . 5
|
| 4 | funcnvres2 4994 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | imaeq1d 4687 |
. . 3
|
| 7 | resss 4653 |
. . . . . . . . . . 11
| |
| 8 | cnvss 4526 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | ax-mp 7 |
. . . . . . . . . 10
|
| 10 | cnvcnvss 4795 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sstri 3008 |
. . . . . . . . 9
|
| 12 | funss 4940 |
. . . . . . . . 9
| |
| 13 | 11, 2, 12 | mpsyl 64 |
. . . . . . . 8
|
| 14 | 13 | adantr 270 |
. . . . . . 7
|
| 15 | df-ima 4376 |
. . . . . . . 8
| |
| 16 | df-rn 4374 |
. . . . . . . 8
| |
| 17 | 15, 16 | eqtr2i 2102 |
. . . . . . 7
|
| 18 | 14, 17 | jctir 306 |
. . . . . 6
|
| 19 | df-fn 4925 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 132 |
. . . . 5
|
| 21 | dfdm4 4545 |
. . . . . 6
| |
| 22 | forn 5129 |
. . . . . . . . . 10
| |
| 23 | 22 | sseq2d 3027 |
. . . . . . . . 9
|
| 24 | 23 | biimpar 291 |
. . . . . . . 8
|
| 25 | df-rn 4374 |
. . . . . . . 8
| |
| 26 | 24, 25 | syl6sseq 3045 |
. . . . . . 7
|
| 27 | ssdmres 4651 |
. . . . . . 7
| |
| 28 | 26, 27 | sylib 120 |
. . . . . 6
|
| 29 | 21, 28 | syl5eqr 2127 |
. . . . 5
|
| 30 | df-fo 4928 |
. . . . 5
| |
| 31 | 20, 29, 30 | sylanbrc 408 |
. . . 4
|
| 32 | foima 5131 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | 6, 33 | eqtr3d 2115 |
. 2
|
| 35 | 1, 34 | syl5eqr 2127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 |
| This theorem is referenced by: f1opw2 5726 fopwdom 6333 |
| Copyright terms: Public domain | W3C validator |