| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | Unicode version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5269 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 |
|
| fvmptf.2 |
|
| fvmptf.3 |
|
| fvmptf.4 |
|
| Ref | Expression |
|---|---|
| fvmptf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. . 3
| |
| 2 | fvmptf.1 |
. . . 4
| |
| 3 | fvmptf.2 |
. . . . . 6
| |
| 4 | 3 | nfel1 2229 |
. . . . 5
|
| 5 | fvmptf.4 |
. . . . . . . 8
| |
| 6 | nfmpt1 3871 |
. . . . . . . 8
| |
| 7 | 5, 6 | nfcxfr 2216 |
. . . . . . 7
|
| 8 | 7, 2 | nffv 5205 |
. . . . . 6
|
| 9 | 8, 3 | nfeq 2226 |
. . . . 5
|
| 10 | 4, 9 | nfim 1504 |
. . . 4
|
| 11 | fvmptf.3 |
. . . . . 6
| |
| 12 | 11 | eleq1d 2147 |
. . . . 5
|
| 13 | fveq2 5198 |
. . . . . 6
| |
| 14 | 13, 11 | eqeq12d 2095 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 232 |
. . . 4
|
| 16 | 5 | fvmpt2 5275 |
. . . . 5
|
| 17 | 16 | ex 113 |
. . . 4
|
| 18 | 2, 10, 15, 17 | vtoclgaf 2663 |
. . 3
|
| 19 | 1, 18 | syl5 32 |
. 2
|
| 20 | 19 | imp 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |