| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprinvd | Unicode version | ||
| Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grprinvlem.c |
|
| grprinvlem.o |
|
| grprinvlem.i |
|
| grprinvlem.a |
|
| grprinvlem.n |
|
| grprinvd.x |
|
| grprinvd.n |
|
| grprinvd.e |
|
| Ref | Expression |
|---|---|
| grprinvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprinvlem.c |
. 2
| |
| 2 | grprinvlem.o |
. 2
| |
| 3 | grprinvlem.i |
. 2
| |
| 4 | grprinvlem.a |
. 2
| |
| 5 | grprinvlem.n |
. 2
| |
| 6 | 1 | 3expb 1139 |
. . . . 5
|
| 7 | 6 | caovclg 5673 |
. . . 4
|
| 8 | 7 | adantlr 460 |
. . 3
|
| 9 | grprinvd.x |
. . 3
| |
| 10 | grprinvd.n |
. . 3
| |
| 11 | 8, 9, 10 | caovcld 5674 |
. 2
|
| 12 | 4 | caovassg 5679 |
. . . . 5
|
| 13 | 12 | adantlr 460 |
. . . 4
|
| 14 | 13, 9, 10, 11 | caovassd 5680 |
. . 3
|
| 15 | grprinvd.e |
. . . . . 6
| |
| 16 | 15 | oveq1d 5547 |
. . . . 5
|
| 17 | 13, 10, 9, 10 | caovassd 5680 |
. . . . 5
|
| 18 | 3 | ralrimiva 2434 |
. . . . . . . 8
|
| 19 | oveq2 5540 |
. . . . . . . . . 10
| |
| 20 | id 19 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | eqeq12d 2095 |
. . . . . . . . 9
|
| 22 | 21 | cbvralv 2577 |
. . . . . . . 8
|
| 23 | 18, 22 | sylib 120 |
. . . . . . 7
|
| 24 | 23 | adantr 270 |
. . . . . 6
|
| 25 | oveq2 5540 |
. . . . . . . 8
| |
| 26 | id 19 |
. . . . . . . 8
| |
| 27 | 25, 26 | eqeq12d 2095 |
. . . . . . 7
|
| 28 | 27 | rspcv 2697 |
. . . . . 6
|
| 29 | 10, 24, 28 | sylc 61 |
. . . . 5
|
| 30 | 16, 17, 29 | 3eqtr3d 2121 |
. . . 4
|
| 31 | 30 | oveq2d 5548 |
. . 3
|
| 32 | 14, 31 | eqtrd 2113 |
. 2
|
| 33 | 1, 2, 3, 4, 5, 11, 32 | grprinvlem 5715 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: grpridd 5717 |
| Copyright terms: Public domain | W3C validator |