| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprinvlem | Unicode version | ||
| Description: Lemma for grprinvd 5716. (Contributed by NM, 9-Aug-2013.) |
| Ref | Expression |
|---|---|
| grprinvlem.c |
|
| grprinvlem.o |
|
| grprinvlem.i |
|
| grprinvlem.a |
|
| grprinvlem.n |
|
| grprinvlem.x |
|
| grprinvlem.e |
|
| Ref | Expression |
|---|---|
| grprinvlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprinvlem.x |
. . 3
| |
| 2 | grprinvlem.n |
. . . . . 6
| |
| 3 | 2 | ralrimiva 2434 |
. . . . 5
|
| 4 | oveq2 5540 |
. . . . . . . 8
| |
| 5 | 4 | eqeq1d 2089 |
. . . . . . 7
|
| 6 | 5 | rexbidv 2369 |
. . . . . 6
|
| 7 | 6 | cbvralv 2577 |
. . . . 5
|
| 8 | 3, 7 | sylib 120 |
. . . 4
|
| 9 | oveq2 5540 |
. . . . . . 7
| |
| 10 | 9 | eqeq1d 2089 |
. . . . . 6
|
| 11 | 10 | rexbidv 2369 |
. . . . 5
|
| 12 | 11 | rspccva 2700 |
. . . 4
|
| 13 | 8, 12 | sylan 277 |
. . 3
|
| 14 | 1, 13 | syldan 276 |
. 2
|
| 15 | grprinvlem.e |
. . . . 5
| |
| 16 | 15 | oveq2d 5548 |
. . . 4
|
| 17 | 16 | adantr 270 |
. . 3
|
| 18 | simprr 498 |
. . . . 5
| |
| 19 | 18 | oveq1d 5547 |
. . . 4
|
| 20 | simpll 495 |
. . . . . 6
| |
| 21 | grprinvlem.a |
. . . . . . 7
| |
| 22 | 21 | caovassg 5679 |
. . . . . 6
|
| 23 | 20, 22 | sylan 277 |
. . . . 5
|
| 24 | simprl 497 |
. . . . 5
| |
| 25 | 1 | adantr 270 |
. . . . 5
|
| 26 | 23, 24, 25, 25 | caovassd 5680 |
. . . 4
|
| 27 | grprinvlem.i |
. . . . . . . . 9
| |
| 28 | 27 | ralrimiva 2434 |
. . . . . . . 8
|
| 29 | oveq2 5540 |
. . . . . . . . . 10
| |
| 30 | id 19 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | eqeq12d 2095 |
. . . . . . . . 9
|
| 32 | 31 | cbvralv 2577 |
. . . . . . . 8
|
| 33 | 28, 32 | sylib 120 |
. . . . . . 7
|
| 34 | 33 | adantr 270 |
. . . . . 6
|
| 35 | oveq2 5540 |
. . . . . . . 8
| |
| 36 | id 19 |
. . . . . . . 8
| |
| 37 | 35, 36 | eqeq12d 2095 |
. . . . . . 7
|
| 38 | 37 | rspcv 2697 |
. . . . . 6
|
| 39 | 1, 34, 38 | sylc 61 |
. . . . 5
|
| 40 | 39 | adantr 270 |
. . . 4
|
| 41 | 19, 26, 40 | 3eqtr3d 2121 |
. . 3
|
| 42 | 17, 41, 18 | 3eqtr3d 2121 |
. 2
|
| 43 | 14, 42 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: grprinvd 5716 |
| Copyright terms: Public domain | W3C validator |