ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem Unicode version

Theorem imadiflem 4998
Description: One direction of imadif 4999. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )

Proof of Theorem imadiflem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2354 . . . 4  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
2 df-rex 2354 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
32notbii 626 . . . 4  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
4 alnex 1428 . . . . . . 7  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
5 19.29r 1552 . . . . . . 7  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  A. x  -.  ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
64, 5sylan2br 282 . . . . . 6  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
7 simpl 107 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  A  /\  x F y ) )
8 simplr 496 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  x F y )
9 simpr 108 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  ( x  e.  B  /\  x F y ) )
10 ancom 262 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  x F y )  <->  ( x F y  /\  x  e.  B ) )
1110notbii 626 . . . . . . . . . . . 12  |-  ( -.  ( x  e.  B  /\  x F y )  <->  -.  ( x F y  /\  x  e.  B
) )
12 imnan 656 . . . . . . . . . . . 12  |-  ( ( x F y  ->  -.  x  e.  B
)  <->  -.  ( x F y  /\  x  e.  B ) )
1311, 12bitr4i 185 . . . . . . . . . . 11  |-  ( -.  ( x  e.  B  /\  x F y )  <-> 
( x F y  ->  -.  x  e.  B ) )
149, 13sylib 120 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x F y  ->  -.  x  e.  B ) )
158, 14mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  x  e.  B )
167, 15, 8jca32 303 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
17 eldif 2982 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
1817anbi1i 445 . . . . . . . . 9  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
19 anandir 555 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2018, 19bitri 182 . . . . . . . 8  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2116, 20sylibr 132 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  ( A  \  B
)  /\  x F
y ) )
2221eximi 1531 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
236, 22syl 14 . . . . 5  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( x  e.  ( A  \  B )  /\  x F y ) )
24 df-rex 2354 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
2523, 24sylibr 132 . . . 4  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x  e.  ( A  \  B ) x F y )
261, 3, 25syl2anb 285 . . 3  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  ->  E. x  e.  ( A  \  B ) x F y )
2726ss2abi 3066 . 2  |-  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) }  C_  { y  |  E. x  e.  ( A  \  B
) x F y }
28 dfima2 4690 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
29 dfima2 4690 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
3028, 29difeq12i 3088 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
31 difab 3233 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
3230, 31eqtri 2101 . 2  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
33 dfima2 4690 . 2  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
3427, 32, 333sstr4i 3038 1  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102   A.wal 1282   E.wex 1421    e. wcel 1433   {cab 2067   E.wrex 2349    \ cdif 2970    C_ wss 2973   class class class wbr 3785   "cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by:  imadif  4999
  Copyright terms: Public domain W3C validator