ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iocssicc Unicode version

Theorem iocssicc 8984
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc  |-  ( A (,] B )  C_  ( A [,] B )

Proof of Theorem iocssicc
Dummy variables  a  b  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 8916 . 2  |-  (,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <  x  /\  x  <_  b ) } )
2 df-icc 8918 . 2  |-  [,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <_  x  /\  x  <_  b ) } )
3 xrltle 8873 . 2  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A  <_  w ) )
4 idd 21 . 2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <_  B  ->  w  <_  B ) )
51, 2, 3, 4ixxssixx 8925 1  |-  ( A (,] B )  C_  ( A [,] B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    e. wcel 1433    C_ wss 2973   class class class wbr 3785  (class class class)co 5532   RR*cxr 7152    < clt 7153    <_ cle 7154   (,]cioc 8912   [,]cicc 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-ioc 8916  df-icc 8918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator