ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4an Unicode version

Theorem iota4an 4906
Description: Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4an  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )

Proof of Theorem iota4an
StepHypRef Expression
1 iota4 4905 . 2  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ph  /\  ps ) )
2 euiotaex 4903 . . . 4  |-  ( E! x ( ph  /\  ps )  ->  ( iota
x ( ph  /\  ps ) )  e.  _V )
3 simpl 107 . . . . 5  |-  ( (
ph  /\  ps )  ->  ph )
43sbcth 2828 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
52, 4syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )
)
6 sbcimg 2855 . . . 4  |-  ( ( iota x ( ph  /\ 
ps ) )  e. 
_V  ->  ( [. ( iota x ( ph  /\  ps ) )  /  x ]. ( ( ph  /\  ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
72, 6syl 14 . . 3  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ( ph  /\ 
ps )  ->  ph )  <->  (
[. ( iota x
( ph  /\  ps )
)  /  x ]. ( ph  /\  ps )  ->  [. ( iota x
( ph  /\  ps )
)  /  x ]. ph ) ) )
85, 7mpbid 145 . 2  |-  ( E! x ( ph  /\  ps )  ->  ( [. ( iota x ( ph  /\ 
ps ) )  /  x ]. ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph ) )
91, 8mpd 13 1  |-  ( E! x ( ph  /\  ps )  ->  [. ( iota x ( ph  /\  ps ) )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   E!weu 1941   _Vcvv 2601   [.wsbc 2815   iotacio 4885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator