ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleadd Unicode version

Theorem ltleadd 7550
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
Assertion
Ref Expression
ltleadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem ltleadd
StepHypRef Expression
1 ltadd1 7533 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
213com23 1144 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
323expa 1138 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  <->  ( A  +  B )  <  ( C  +  B )
) )
43adantrr 462 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  C  <->  ( A  +  B )  <  ( C  +  B ) ) )
5 leadd2 7535 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR  /\  C  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
653com23 1144 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
763expb 1139 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
87adantll 459 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D ) ) )
94, 8anbi12d 456 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  <->  ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
) ) )
10 readdcl 7099 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
1110adantr 270 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
12 readdcl 7099 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1312ancoms 264 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  +  B
)  e.  RR )
1413ad2ant2lr 493 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
15 readdcl 7099 . . . 4  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  e.  RR )
1615adantl 271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
17 ltletr 7200 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <  ( C  +  B )  /\  ( C  +  B )  <_  ( C  +  D
) )  ->  ( A  +  B )  <  ( C  +  D
) ) )
1811, 14, 16, 17syl3anc 1169 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
)  ->  ( A  +  B )  <  ( C  +  D )
) )
199, 18sylbid 148 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980    + caddc 6984    < clt 7153    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-pre-ltwlin 7089  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-iota 4887  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159
This theorem is referenced by:  leltadd  7551  addgtge0  7554  ltleaddd  7665
  Copyright terms: Public domain W3C validator