| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanim | Unicode version | ||
| Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| moanim.1 |
|
| Ref | Expression |
|---|---|
| moanim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandi 554 |
. . . . 5
| |
| 2 | 1 | imbi1i 236 |
. . . 4
|
| 3 | impexp 259 |
. . . 4
| |
| 4 | sban 1870 |
. . . . . . 7
| |
| 5 | moanim.1 |
. . . . . . . . 9
| |
| 6 | 5 | sbf 1700 |
. . . . . . . 8
|
| 7 | 6 | anbi1i 445 |
. . . . . . 7
|
| 8 | 4, 7 | bitr2i 183 |
. . . . . 6
|
| 9 | 8 | anbi2i 444 |
. . . . 5
|
| 10 | 9 | imbi1i 236 |
. . . 4
|
| 11 | 2, 3, 10 | 3bitr3i 208 |
. . 3
|
| 12 | 11 | 2albii 1400 |
. 2
|
| 13 | 5 | 19.21 1515 |
. . 3
|
| 14 | 19.21v 1794 |
. . . 4
| |
| 15 | 14 | albii 1399 |
. . 3
|
| 16 | ax-17 1459 |
. . . . 5
| |
| 17 | 16 | mo3h 1994 |
. . . 4
|
| 18 | 17 | imbi2i 224 |
. . 3
|
| 19 | 13, 15, 18 | 3bitr4ri 211 |
. 2
|
| 20 | ax-17 1459 |
. . 3
| |
| 21 | 20 | mo3h 1994 |
. 2
|
| 22 | 12, 19, 21 | 3bitr4ri 211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: moanimv 2016 moaneu 2017 moanmo 2018 |
| Copyright terms: Public domain | W3C validator |