| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2i | Unicode version | ||
| Description: mp3an 1268 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an2i.1 |
|
| mp3an2i.2 |
|
| mp3an2i.3 |
|
| mp3an2i.4 |
|
| Ref | Expression |
|---|---|
| mp3an2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2i.2 |
. 2
| |
| 2 | mp3an2i.3 |
. 2
| |
| 3 | mp3an2i.1 |
. . 3
| |
| 4 | mp3an2i.4 |
. . 3
| |
| 5 | 3, 4 | mp3an1 1255 |
. 2
|
| 6 | 1, 2, 5 | syl2anc 403 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: nnledivrp 8837 gcdn0gt0 10369 divgcdodd 10522 sqpweven 10553 2sqpwodd 10554 |
| Copyright terms: Public domain | W3C validator |