ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven Unicode version

Theorem sqpweven 10553
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
sqpweven  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . 8  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 10552 . . . . . . 7  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5159 . . . . . . 7  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5146 . . . . . . 7  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . 6  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelrni 5322 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 5813 . . . . 5  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 8467 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 8193 . . . . 5  |-  2  e.  NN
1211a1i 9 . . . 4  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 8468 . . 3  |-  ( A  e.  NN  ->  2  e.  ZZ )
14 dvdsmul2 10218 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1510, 13, 14syl2anc 403 . 2  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
16 xp1st 5812 . . . . . . . . . 10  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
177, 16syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
18 breq2 3789 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
1918notbid 624 . . . . . . . . . . 11  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2019, 1elrab2 2751 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2120simplbi 268 . . . . . . . . 9  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2217, 21syl 14 . . . . . . . 8  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2322nnsqcld 9626 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2420simprbi 269 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
2517, 24syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
26 2prm 10509 . . . . . . . . . 10  |-  2  e.  Prime
2722nnzd 8468 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
28 euclemma 10525 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
29 oridm 706 . . . . . . . . . . 11  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3028, 29syl6bb 194 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3126, 27, 27, 30mp3an2i 1273 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3225, 31mtbird 630 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3322nncnd 8053 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3433sqvald 9602 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3534breq2d 3797 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
3632, 35mtbird 630 . . . . . . 7  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
37 breq2 3789 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3837notbid 624 . . . . . . . 8  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3938, 1elrab2 2751 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4023, 36, 39sylanbrc 408 . . . . . 6  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4112nnnn0d 8341 . . . . . . 7  |-  ( A  e.  NN  ->  2  e.  NN0 )
429, 41nn0mulcld 8346 . . . . . 6  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
43 opelxp 4392 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  <->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 ) )
4440, 42, 43sylanbrc 408 . . . . 5  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)
4512nncnd 8053 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  CC )
4645, 41, 9expmuld 9608 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
4746oveq1d 5547 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4812, 42nnexpcld 9627 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  NN )
4948, 23nnmulcld 8087 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )
50 oveq2 5540 . . . . . . . . 9  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
51 oveq2 5540 . . . . . . . . . 10  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
2 ^ y )  =  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
5251oveq1d 5547 . . . . . . . . 9  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
( 2 ^ y
)  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5350, 52, 2ovmpt2g 5655 . . . . . . . 8  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  /\  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )  ->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5440, 42, 49, 53syl3anc 1169 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
55 f1ocnvfv2 5438 . . . . . . . . . . . . 13  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
563, 55mpan 414 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
57 1st2nd2 5821 . . . . . . . . . . . . . 14  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
587, 57syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
5958fveq2d 5202 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
6056, 59eqtr3d 2115 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
61 df-ov 5535 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
6260, 61syl6eqr 2131 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
6312, 9nnexpcld 9627 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
6463, 22nnmulcld 8087 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
65 oveq2 5540 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
66 oveq2 5540 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
6766oveq1d 5547 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6865, 67, 2ovmpt2g 5655 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6917, 9, 64, 68syl3anc 1169 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7062, 69eqtrd 2113 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7170oveq1d 5547 . . . . . . . 8  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
7263nncnd 8053 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
7372, 33sqmuld 9617 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7471, 73eqtrd 2113 . . . . . . 7  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7547, 54, 743eqtr4rd 2124 . . . . . 6  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 1st `  ( `' F `  A ) ) ^
2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
76 df-ov 5535 . . . . . 6  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
7775, 76syl6req 2130 . . . . 5  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 ) )
78 f1ocnvfv 5439 . . . . . 6  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
793, 78mpan 414 . . . . 5  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
8044, 77, 79sylc 61 . . . 4  |-  ( A  e.  NN  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )
8180fveq2d 5202 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
)
82 op2ndg 5798 . . . 4  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )  -> 
( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8340, 42, 82syl2anc 403 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )  =  (
( 2nd `  ( `' F `  A ) )  x.  2 ) )
8481, 83eqtrd 2113 . 2  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8515, 84breqtrrd 3811 1  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   {crab 2352   <.cop 3401   class class class wbr 3785    X. cxp 4361   `'ccnv 4362   -->wf 4918   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786    x. cmul 6986   NNcn 8039   2c2 8089   NN0cn0 8288   ZZcz 8351   ^cexp 9475    || cdvds 10195   Primecprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-prm 10490
This theorem is referenced by:  sqne2sq  10555
  Copyright terms: Public domain W3C validator