ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt20 Unicode version

Theorem mpt20 5594
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
mpt20  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)

Proof of Theorem mpt20
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5537 . 2  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) }
2 df-oprab 5536 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) ) }
3 noel 3255 . . . . . . 7  |-  -.  x  e.  (/)
4 simprll 503 . . . . . . 7  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )  ->  x  e.  (/) )
53, 4mto 620 . . . . . 6  |-  -.  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
65nex 1429 . . . . 5  |-  -.  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
76nex 1429 . . . 4  |-  -.  E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
87nex 1429 . . 3  |-  -.  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  (
( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
98abf 3287 . 2  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) ) }  =  (/)
101, 2, 93eqtri 2105 1  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   (/)c0 3251   <.cop 3401   {coprab 5533    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-oprab 5536  df-mpt2 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator