ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullt0 Unicode version

Theorem mullt0 7584
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( A  x.  B ) )

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 7369 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
21adantr 270 . . . 4  |-  ( ( A  e.  RR  /\  A  <  0 )  ->  -u A  e.  RR )
3 lt0neg1 7572 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
43biimpa 290 . . . 4  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
0  <  -u A )
52, 4jca 300 . . 3  |-  ( ( A  e.  RR  /\  A  <  0 )  -> 
( -u A  e.  RR  /\  0  <  -u A
) )
6 renegcl 7369 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
76adantr 270 . . . 4  |-  ( ( B  e.  RR  /\  B  <  0 )  ->  -u B  e.  RR )
8 lt0neg1 7572 . . . . 5  |-  ( B  e.  RR  ->  ( B  <  0  <->  0  <  -u B ) )
98biimpa 290 . . . 4  |-  ( ( B  e.  RR  /\  B  <  0 )  -> 
0  <  -u B )
107, 9jca 300 . . 3  |-  ( ( B  e.  RR  /\  B  <  0 )  -> 
( -u B  e.  RR  /\  0  <  -u B
) )
11 mulgt0 7186 . . 3  |-  ( ( ( -u A  e.  RR  /\  0  <  -u A )  /\  ( -u B  e.  RR  /\  0  <  -u B ) )  ->  0  <  ( -u A  x.  -u B
) )
125, 10, 11syl2an 283 . 2  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( -u A  x.  -u B ) )
13 recn 7106 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
14 recn 7106 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
15 mul2neg 7502 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
1613, 14, 15syl2an 283 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  x.  -u B )  =  ( A  x.  B ) )
1716ad2ant2r 492 . 2  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
( -u A  x.  -u B
)  =  ( A  x.  B ) )
1812, 17breqtrd 3809 1  |-  ( ( ( A  e.  RR  /\  A  <  0 )  /\  ( B  e.  RR  /\  B  <  0 ) )  -> 
0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981    x. cmul 6986    < clt 7153   -ucneg 7280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282
This theorem is referenced by:  inelr  7684  apsqgt0  7701
  Copyright terms: Public domain W3C validator