| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeu | Unicode version | ||
| Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 7286 |
. . 3
| |
| 2 | 1 | adantr 270 |
. 2
|
| 3 | simpl 107 |
. . . 4
| |
| 4 | simpr 108 |
. . . 4
| |
| 5 | addcl 7098 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 284 |
. . 3
|
| 7 | simplrr 502 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5547 |
. . . . . . 7
|
| 9 | simplll 499 |
. . . . . . . 8
| |
| 10 | simplrl 501 |
. . . . . . . 8
| |
| 11 | simpllr 500 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | addassd 7141 |
. . . . . . 7
|
| 13 | 11 | addid2d 7258 |
. . . . . . 7
|
| 14 | 8, 12, 13 | 3eqtr3rd 2122 |
. . . . . 6
|
| 15 | 14 | eqeq2d 2092 |
. . . . 5
|
| 16 | simpr 108 |
. . . . . 6
| |
| 17 | 10, 11 | addcld 7138 |
. . . . . 6
|
| 18 | 9, 16, 17 | addcand 7292 |
. . . . 5
|
| 19 | 15, 18 | bitrd 186 |
. . . 4
|
| 20 | 19 | ralrimiva 2434 |
. . 3
|
| 21 | reu6i 2783 |
. . 3
| |
| 22 | 6, 20, 21 | syl2anc 403 |
. 2
|
| 23 | 2, 22 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: subval 7300 subcl 7307 subadd 7311 |
| Copyright terms: Public domain | W3C validator |