| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addid2d | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| muld.1 |
|
| Ref | Expression |
|---|---|
| addid2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addid2 7247 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-mulcl 7074 ax-addcom 7076 ax-i2m1 7081 ax-0id 7084 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: negeu 7299 ltadd2 7523 subge0 7579 sublt0d 7670 un0addcl 8321 lincmb01cmp 9025 modsumfzodifsn 9398 rennim 9888 max0addsup 10105 moddvds 10204 gcdaddm 10375 bezoutlemb 10389 |
| Copyright terms: Public domain | W3C validator |