ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfifd Unicode version

Theorem nfifd 3376
Description: Deduction version of nfif 3377. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2  |-  ( ph  ->  F/ x ps )
nfifd.3  |-  ( ph  -> 
F/_ x A )
nfifd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfifd  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )

Proof of Theorem nfifd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-if 3352 . 2  |-  if ( ps ,  A ,  B )  =  {
y  |  ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) }
2 nfv 1461 . . 3  |-  F/ y
ph
3 nfifd.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
43nfcrd 2232 . . . . 5  |-  ( ph  ->  F/ x  y  e.  A )
5 nfifd.2 . . . . 5  |-  ( ph  ->  F/ x ps )
64, 5nfand 1500 . . . 4  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
7 nfifd.4 . . . . . 6  |-  ( ph  -> 
F/_ x B )
87nfcrd 2232 . . . . 5  |-  ( ph  ->  F/ x  y  e.  B )
95nfnd 1587 . . . . 5  |-  ( ph  ->  F/ x  -.  ps )
108, 9nfand 1500 . . . 4  |-  ( ph  ->  F/ x ( y  e.  B  /\  -.  ps ) )
116, 10nford 1499 . . 3  |-  ( ph  ->  F/ x ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) )
122, 11nfabd 2237 . 2  |-  ( ph  -> 
F/_ x { y  |  ( ( y  e.  A  /\  ps )  \/  ( y  e.  B  /\  -.  ps ) ) } )
131, 12nfcxfrd 2217 1  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661   F/wnf 1389    e. wcel 1433   {cab 2067   F/_wnfc 2206   ifcif 3351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-if 3352
This theorem is referenced by:  nfif  3377
  Copyright terms: Public domain W3C validator