ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpr Unicode version

Theorem nfpr 3442
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1  |-  F/_ x A
nfpr.2  |-  F/_ x B
Assertion
Ref Expression
nfpr  |-  F/_ x { A ,  B }

Proof of Theorem nfpr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfpr2 3417 . 2  |-  { A ,  B }  =  {
y  |  ( y  =  A  \/  y  =  B ) }
2 nfpr.1 . . . . 5  |-  F/_ x A
32nfeq2 2230 . . . 4  |-  F/ x  y  =  A
4 nfpr.2 . . . . 5  |-  F/_ x B
54nfeq2 2230 . . . 4  |-  F/ x  y  =  B
63, 5nfor 1506 . . 3  |-  F/ x
( y  =  A  \/  y  =  B )
76nfab 2223 . 2  |-  F/_ x { y  |  ( y  =  A  \/  y  =  B ) }
81, 7nfcxfr 2216 1  |-  F/_ x { A ,  B }
Colors of variables: wff set class
Syntax hints:    \/ wo 661    = wceq 1284   {cab 2067   F/_wnfc 2206   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  nfsn  3452  nfop  3586
  Copyright terms: Public domain W3C validator