ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfres Unicode version

Theorem nfres 4632
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1  |-  F/_ x A
nfres.2  |-  F/_ x B
Assertion
Ref Expression
nfres  |-  F/_ x
( A  |`  B )

Proof of Theorem nfres
StepHypRef Expression
1 df-res 4375 . 2  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
2 nfres.1 . . 3  |-  F/_ x A
3 nfres.2 . . . 4  |-  F/_ x B
4 nfcv 2219 . . . 4  |-  F/_ x _V
53, 4nfxp 4389 . . 3  |-  F/_ x
( B  X.  _V )
62, 5nfin 3172 . 2  |-  F/_ x
( A  i^i  ( B  X.  _V ) )
71, 6nfcxfr 2216 1  |-  F/_ x
( A  |`  B )
Colors of variables: wff set class
Syntax hints:   F/_wnfc 2206   _Vcvv 2601    i^i cin 2972    X. cxp 4361    |` cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-in 2979  df-opab 3840  df-xp 4369  df-res 4375
This theorem is referenced by:  nfima  4696  nffrec  6005
  Copyright terms: Public domain W3C validator