ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec Unicode version

Theorem nffrec 6005
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1  |-  F/_ x F
nffrec.2  |-  F/_ x A
Assertion
Ref Expression
nffrec  |-  F/_ xfrec ( F ,  A )

Proof of Theorem nffrec
Dummy variables  g  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6001 . 2  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
2 nfcv 2219 . . . . 5  |-  F/_ x _V
3 nfcv 2219 . . . . . . . 8  |-  F/_ x om
4 nfv 1461 . . . . . . . . 9  |-  F/ x dom  g  =  suc  m
5 nffrec.1 . . . . . . . . . . 11  |-  F/_ x F
6 nfcv 2219 . . . . . . . . . . 11  |-  F/_ x
( g `  m
)
75, 6nffv 5205 . . . . . . . . . 10  |-  F/_ x
( F `  (
g `  m )
)
87nfcri 2213 . . . . . . . . 9  |-  F/ x  y  e.  ( F `  ( g `  m
) )
94, 8nfan 1497 . . . . . . . 8  |-  F/ x
( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )
103, 9nfrexya 2405 . . . . . . 7  |-  F/ x E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )
11 nfv 1461 . . . . . . . 8  |-  F/ x dom  g  =  (/)
12 nffrec.2 . . . . . . . . 9  |-  F/_ x A
1312nfcri 2213 . . . . . . . 8  |-  F/ x  y  e.  A
1411, 13nfan 1497 . . . . . . 7  |-  F/ x
( dom  g  =  (/) 
/\  y  e.  A
)
1510, 14nfor 1506 . . . . . 6  |-  F/ x
( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )
1615nfab 2223 . . . . 5  |-  F/_ x { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }
172, 16nfmpt 3870 . . . 4  |-  F/_ x
( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1817nfrecs 5945 . . 3  |-  F/_ xrecs ( ( g  e. 
_V  |->  { y  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )
1918, 3nfres 4632 . 2  |-  F/_ x
(recs ( ( g  e.  _V  |->  { y  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  y  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } ) )  |`  om )
201, 19nfcxfr 2216 1  |-  F/_ xfrec ( F ,  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433   {cab 2067   F/_wnfc 2206   E.wrex 2349   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   suc csuc 4120   omcom 4331   dom cdm 4363    |` cres 4365   ` cfv 4922  recscrecs 5942  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-res 4375  df-iota 4887  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  nfiseq  9438
  Copyright terms: Public domain W3C validator