| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequi | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbequi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb2or 1758 |
. . . 4
| |
| 2 | nfr 1451 |
. . . . . 6
| |
| 3 | equvini 1681 |
. . . . . . 7
| |
| 4 | stdpc7 1693 |
. . . . . . . . 9
| |
| 5 | sbequ1 1691 |
. . . . . . . . 9
| |
| 6 | 4, 5 | sylan9 401 |
. . . . . . . 8
|
| 7 | 6 | eximi 1531 |
. . . . . . 7
|
| 8 | 19.35-1 1555 |
. . . . . . 7
| |
| 9 | 3, 7, 8 | 3syl 17 |
. . . . . 6
|
| 10 | 2, 9 | syl9 71 |
. . . . 5
|
| 11 | 10 | orim2i 710 |
. . . 4
|
| 12 | 1, 11 | ax-mp 7 |
. . 3
|
| 13 | nfsb2or 1758 |
. . . . 5
| |
| 14 | 19.9t 1573 |
. . . . . . 7
| |
| 15 | 14 | biimpd 142 |
. . . . . 6
|
| 16 | 15 | orim2i 710 |
. . . . 5
|
| 17 | 13, 16 | ax-mp 7 |
. . . 4
|
| 18 | ax-1 5 |
. . . . 5
| |
| 19 | 18 | orim2i 710 |
. . . 4
|
| 20 | 17, 19 | ax-mp 7 |
. . 3
|
| 21 | 12, 20 | sbequilem 1759 |
. 2
|
| 22 | sbequ2 1692 |
. . . . . . 7
| |
| 23 | 22 | sps 1470 |
. . . . . 6
|
| 24 | 23 | adantr 270 |
. . . . 5
|
| 25 | sbequ1 1691 |
. . . . . 6
| |
| 26 | drsb1 1720 |
. . . . . . . 8
| |
| 27 | 26 | biimpd 142 |
. . . . . . 7
|
| 28 | 27 | alequcoms 1449 |
. . . . . 6
|
| 29 | 25, 28 | sylan9r 402 |
. . . . 5
|
| 30 | 24, 29 | syld 44 |
. . . 4
|
| 31 | 30 | ex 113 |
. . 3
|
| 32 | drsb1 1720 |
. . . . . . . . 9
| |
| 33 | 32 | biimpd 142 |
. . . . . . . 8
|
| 34 | stdpc7 1693 |
. . . . . . . 8
| |
| 35 | 33, 34 | sylan9 401 |
. . . . . . 7
|
| 36 | 5 | sps 1470 |
. . . . . . . 8
|
| 37 | 36 | adantr 270 |
. . . . . . 7
|
| 38 | 35, 37 | syld 44 |
. . . . . 6
|
| 39 | 38 | ex 113 |
. . . . 5
|
| 40 | 39 | orim1i 709 |
. . . 4
|
| 41 | pm1.2 705 |
. . . 4
| |
| 42 | 40, 41 | syl 14 |
. . 3
|
| 43 | 31, 42 | jaoi 668 |
. 2
|
| 44 | 21, 43 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbequ 1761 |
| Copyright terms: Public domain | W3C validator |