| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb4t | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1929). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
| Ref | Expression |
|---|---|
| nfsb4t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf1 1476 |
. . . . 5
| |
| 2 | 1 | nfal 1508 |
. . . 4
|
| 3 | nfnae 1650 |
. . . 4
| |
| 4 | 2, 3 | nfan 1497 |
. . 3
|
| 5 | df-nf 1390 |
. . . . . 6
| |
| 6 | 5 | albii 1399 |
. . . . 5
|
| 7 | hbsb4t 1930 |
. . . . 5
| |
| 8 | 6, 7 | sylbi 119 |
. . . 4
|
| 9 | 8 | imp 122 |
. . 3
|
| 10 | 4, 9 | nfd 1456 |
. 2
|
| 11 | 10 | ex 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: dvelimdf 1933 |
| Copyright terms: Public domain | W3C validator |