ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addge1i Unicode version

Theorem nn0addge1i 8336
Description: A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
Hypotheses
Ref Expression
nn0addge1.1  |-  A  e.  RR
nn0addge1.2  |-  N  e. 
NN0
Assertion
Ref Expression
nn0addge1i  |-  A  <_ 
( A  +  N
)

Proof of Theorem nn0addge1i
StepHypRef Expression
1 nn0addge1.1 . 2  |-  A  e.  RR
2 nn0addge1.2 . 2  |-  N  e. 
NN0
3 nn0addge1 8334 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  A  <_  ( A  +  N ) )
41, 2, 3mp2an 416 1  |-  A  <_ 
( A  +  N
)
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980    + caddc 6984    <_ cle 7154   NN0cn0 8288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-iota 4887  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-inn 8040  df-n0 8289
This theorem is referenced by:  nn0le2xi  8338  numltc  8502
  Copyright terms: Public domain W3C validator