ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g Unicode version

Theorem frec0g 6006
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )

Proof of Theorem frec0g
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4567 . . . . . . . . . 10  |-  dom  (/)  =  (/)
21biantrur 297 . . . . . . . . 9  |-  ( x  e.  A  <->  ( dom  (/)  =  (/)  /\  x  e.  A ) )
3 vex 2604 . . . . . . . . . . . . . . . 16  |-  m  e. 
_V
4 nsuceq0g 4173 . . . . . . . . . . . . . . . 16  |-  ( m  e.  _V  ->  suc  m  =/=  (/) )
53, 4ax-mp 7 . . . . . . . . . . . . . . 15  |-  suc  m  =/=  (/)
65nesymi 2291 . . . . . . . . . . . . . 14  |-  -.  (/)  =  suc  m
71eqeq1i 2088 . . . . . . . . . . . . . 14  |-  ( dom  (/)  =  suc  m  <->  (/)  =  suc  m )
86, 7mtbir 628 . . . . . . . . . . . . 13  |-  -.  dom  (/)  =  suc  m
98intnanr 872 . . . . . . . . . . . 12  |-  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
109a1i 9 . . . . . . . . . . 11  |-  ( m  e.  om  ->  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) )
1110nrex 2453 . . . . . . . . . 10  |-  -.  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
1211biorfi 697 . . . . . . . . 9  |-  ( ( dom  (/)  =  (/)  /\  x  e.  A )  <->  ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
13 orcom 679 . . . . . . . . 9  |-  ( ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
142, 12, 133bitri 204 . . . . . . . 8  |-  ( x  e.  A  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
1514abbii 2194 . . . . . . 7  |-  { x  |  x  e.  A }  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }
16 abid2 2199 . . . . . . 7  |-  { x  |  x  e.  A }  =  A
1715, 16eqtr3i 2103 . . . . . 6  |-  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  =  A
18 elex 2610 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
1917, 18syl5eqel 2165 . . . . 5  |-  ( A  e.  V  ->  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )
20 0ex 3905 . . . . . . 7  |-  (/)  e.  _V
21 dmeq 4553 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
2221eqeq1d 2089 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( dom  g  =  suc  m  <->  dom  (/)  =  suc  m ) )
23 fveq1 5197 . . . . . . . . . . . . . 14  |-  ( g  =  (/)  ->  ( g `
 m )  =  ( (/) `  m ) )
2423fveq2d 5202 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  ( F `
 ( g `  m ) )  =  ( F `  ( (/) `  m ) ) )
2524eleq2d 2148 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( x  e.  ( F `  ( g `  m
) )  <->  x  e.  ( F `  ( (/) `  m ) ) ) )
2622, 25anbi12d 456 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) ) )
2726rexbidv 2369 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
2821eqeq1d 2089 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( dom  g  =  (/)  <->  dom  (/)  =  (/) ) )
2928anbi1d 452 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <-> 
( dom  (/)  =  (/)  /\  x  e.  A ) ) )
3027, 29orbi12d 739 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) ) )
3130abbidv 2196 . . . . . . . 8  |-  ( g  =  (/)  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
32 eqid 2081 . . . . . . . 8  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3331, 32fvmptg 5269 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  {
x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )  ->  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3420, 33mpan 414 . . . . . 6  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3534, 17syl6eq 2129 . . . . 5  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3619, 35syl 14 . . . 4  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3736, 18eqeltrd 2155 . . 3  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V )
38 df-frec 6001 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
3938fveq1i 5199 . . . . 5  |-  (frec ( F ,  A ) `
 (/) )  =  ( (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )
40 peano1 4335 . . . . . 6  |-  (/)  e.  om
41 fvres 5219 . . . . . 6  |-  ( (/)  e.  om  ->  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) ) )
4240, 41ax-mp 7 . . . . 5  |-  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
4339, 42eqtri 2101 . . . 4  |-  (frec ( F ,  A ) `
 (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
44 eqid 2081 . . . . 5  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4544tfr0 5960 . . . 4  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )  =  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4643, 45syl5eq 2125 . . 3  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (frec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4737, 46syl 14 . 2  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4847, 36eqtrd 2113 1  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433   {cab 2067    =/= wne 2245   E.wrex 2349   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   suc csuc 4120   omcom 4331   dom cdm 4363    |` cres 4365   ` cfv 4922  recscrecs 5942  freccfrec 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943  df-frec 6001
This theorem is referenced by:  frecrdg  6015  freccl  6016  frec2uz0d  9401  frec2uzrdg  9411  frecuzrdg0  9416
  Copyright terms: Public domain W3C validator