| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordon | Unicode version | ||
| Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| ordon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 4137 |
. 2
| |
| 2 | df-on 4123 |
. . . . 5
| |
| 3 | 2 | abeq2i 2189 |
. . . 4
|
| 4 | ordtr 4133 |
. . . 4
| |
| 5 | 3, 4 | sylbi 119 |
. . 3
|
| 6 | 5 | rgen 2416 |
. 2
|
| 7 | dford3 4122 |
. 2
| |
| 8 | 1, 6, 7 | mpbir2an 883 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
| This theorem is referenced by: ssorduni 4231 limon 4257 onprc 4295 |
| Copyright terms: Public domain | W3C validator |