| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunpw | Unicode version | ||
| Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| iunpw.1 |
|
| Ref | Expression |
|---|---|
| iunpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3021 |
. . . . . . . 8
| |
| 2 | 1 | biimprcd 158 |
. . . . . . 7
|
| 3 | 2 | reximdv 2462 |
. . . . . 6
|
| 4 | 3 | com12 30 |
. . . . 5
|
| 5 | ssiun 3720 |
. . . . . 6
| |
| 6 | uniiun 3731 |
. . . . . 6
| |
| 7 | 5, 6 | syl6sseqr 3046 |
. . . . 5
|
| 8 | 4, 7 | impbid1 140 |
. . . 4
|
| 9 | vex 2604 |
. . . . 5
| |
| 10 | 9 | elpw 3388 |
. . . 4
|
| 11 | eliun 3682 |
. . . . 5
| |
| 12 | df-pw 3384 |
. . . . . . 7
| |
| 13 | 12 | abeq2i 2189 |
. . . . . 6
|
| 14 | 13 | rexbii 2373 |
. . . . 5
|
| 15 | 11, 14 | bitri 182 |
. . . 4
|
| 16 | 8, 10, 15 | 3bitr4g 221 |
. . 3
|
| 17 | 16 | eqrdv 2079 |
. 2
|
| 18 | ssid 3018 |
. . . . 5
| |
| 19 | iunpw.1 |
. . . . . . . 8
| |
| 20 | 19 | uniex 4192 |
. . . . . . 7
|
| 21 | 20 | elpw 3388 |
. . . . . 6
|
| 22 | eleq2 2142 |
. . . . . 6
| |
| 23 | 21, 22 | syl5bbr 192 |
. . . . 5
|
| 24 | 18, 23 | mpbii 146 |
. . . 4
|
| 25 | eliun 3682 |
. . . 4
| |
| 26 | 24, 25 | sylib 120 |
. . 3
|
| 27 | elssuni 3629 |
. . . . . . 7
| |
| 28 | elpwi 3391 |
. . . . . . 7
| |
| 29 | 27, 28 | anim12i 331 |
. . . . . 6
|
| 30 | eqss 3014 |
. . . . . 6
| |
| 31 | 29, 30 | sylibr 132 |
. . . . 5
|
| 32 | 31 | ex 113 |
. . . 4
|
| 33 | 32 | reximia 2456 |
. . 3
|
| 34 | 26, 33 | syl 14 |
. 2
|
| 35 | 17, 34 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-pw 3384 df-uni 3602 df-iun 3680 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |