ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovconst2 Unicode version

Theorem ovconst2 5672
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1  |-  C  e. 
_V
Assertion
Ref Expression
ovconst2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 5535 . 2  |-  ( R ( ( A  X.  B )  X.  { C } ) S )  =  ( ( ( A  X.  B )  X.  { C }
) `  <. R ,  S >. )
2 opelxpi 4394 . . 3  |-  ( ( R  e.  A  /\  S  e.  B )  -> 
<. R ,  S >.  e.  ( A  X.  B
) )
3 oprvalconst2.1 . . . 4  |-  C  e. 
_V
43fvconst2 5398 . . 3  |-  ( <. R ,  S >.  e.  ( A  X.  B
)  ->  ( (
( A  X.  B
)  X.  { C } ) `  <. R ,  S >. )  =  C )
52, 4syl 14 . 2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( ( ( A  X.  B )  X. 
{ C } ) `
 <. R ,  S >. )  =  C )
61, 5syl5eq 2125 1  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   {csn 3398   <.cop 3401    X. cxp 4361   ` cfv 4922  (class class class)co 5532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-ov 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator