ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2df Unicode version

Theorem ovmpt2df 5652
Description: Alternate deduction version of ovmpt2 5656, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpt2df.1  |-  ( ph  ->  A  e.  C )
ovmpt2df.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
ovmpt2df.3  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
ovmpt2df.4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
ovmpt2df.5  |-  F/_ x F
ovmpt2df.6  |-  F/ x ps
ovmpt2df.7  |-  F/_ y F
ovmpt2df.8  |-  F/ y ps
Assertion
Ref Expression
ovmpt2df  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Distinct variable groups:    x, y, A   
y, B    ph, x, y
Allowed substitution hints:    ps( x, y)    B( x)    C( x, y)    D( x, y)    R( x, y)    F( x, y)    V( x, y)

Proof of Theorem ovmpt2df
StepHypRef Expression
1 nfv 1461 . 2  |-  F/ x ph
2 ovmpt2df.5 . . . 4  |-  F/_ x F
3 nfmpt21 5591 . . . 4  |-  F/_ x
( x  e.  C ,  y  e.  D  |->  R )
42, 3nfeq 2226 . . 3  |-  F/ x  F  =  ( x  e.  C ,  y  e.  D  |->  R )
5 ovmpt2df.6 . . 3  |-  F/ x ps
64, 5nfim 1504 . 2  |-  F/ x
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
7 ovmpt2df.1 . . . 4  |-  ( ph  ->  A  e.  C )
8 elex 2610 . . . 4  |-  ( A  e.  C  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2605 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 120 . 2  |-  ( ph  ->  E. x  x  =  A )
12 ovmpt2df.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
13 elex 2610 . . . . 5  |-  ( B  e.  D  ->  B  e.  _V )
1412, 13syl 14 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
15 isset 2605 . . . 4  |-  ( B  e.  _V  <->  E. y 
y  =  B )
1614, 15sylib 120 . . 3  |-  ( (
ph  /\  x  =  A )  ->  E. y 
y  =  B )
17 nfv 1461 . . . 4  |-  F/ y ( ph  /\  x  =  A )
18 ovmpt2df.7 . . . . . 6  |-  F/_ y F
19 nfmpt22 5592 . . . . . 6  |-  F/_ y
( x  e.  C ,  y  e.  D  |->  R )
2018, 19nfeq 2226 . . . . 5  |-  F/ y  F  =  ( x  e.  C ,  y  e.  D  |->  R )
21 ovmpt2df.8 . . . . 5  |-  F/ y ps
2220, 21nfim 1504 . . . 4  |-  F/ y ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
23 oveq 5538 . . . . . 6  |-  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  -> 
( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
24 simprl 497 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  x  =  A )
25 simprr 498 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
y  =  B )
2624, 25oveq12d 5550 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B ) )
277adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  A  e.  C )
2824, 27eqeltrd 2155 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  x  e.  C )
2912adantrr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  B  e.  D )
3025, 29eqeltrd 2155 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
y  e.  D )
31 ovmpt2df.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
32 eqid 2081 . . . . . . . . . . 11  |-  ( x  e.  C ,  y  e.  D  |->  R )  =  ( x  e.  C ,  y  e.  D  |->  R )
3332ovmpt4g 5643 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  y  e.  D  /\  R  e.  V )  ->  ( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
3428, 30, 31, 33syl3anc 1169 . . . . . . . . 9  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( x ( x  e.  C ,  y  e.  D  |->  R ) y )  =  R )
3526, 34eqtr3d 2115 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( A ( x  e.  C ,  y  e.  D  |->  R ) B )  =  R )
3635eqeq2d 2092 . . . . . . 7  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  <->  ( A F B )  =  R ) )
37 ovmpt2df.4 . . . . . . 7  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
3836, 37sylbid 148 . . . . . 6  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  ( A ( x  e.  C ,  y  e.  D  |->  R ) B )  ->  ps )
)
3923, 38syl5 32 . . . . 5  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
4039expr 367 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
y  =  B  -> 
( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
) )
4117, 22, 40exlimd 1528 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( E. y  y  =  B  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) ) )
4216, 41mpd 13 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  C ,  y  e.  D  |->  R )  ->  ps ) )
431, 6, 11, 42exlimdd 1793 1  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   F/wnf 1389   E.wex 1421    e. wcel 1433   F/_wnfc 2206   _Vcvv 2601  (class class class)co 5532    |-> cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537
This theorem is referenced by:  ovmpt2dv  5653  ovmpt2dv2  5654
  Copyright terms: Public domain W3C validator