| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpt2df | Unicode version | ||
| Description: Alternate deduction version of ovmpt2 5656, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovmpt2df.1 |
|
| ovmpt2df.2 |
|
| ovmpt2df.3 |
|
| ovmpt2df.4 |
|
| ovmpt2df.5 |
|
| ovmpt2df.6 |
|
| ovmpt2df.7 |
|
| ovmpt2df.8 |
|
| Ref | Expression |
|---|---|
| ovmpt2df |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. 2
| |
| 2 | ovmpt2df.5 |
. . . 4
| |
| 3 | nfmpt21 5591 |
. . . 4
| |
| 4 | 2, 3 | nfeq 2226 |
. . 3
|
| 5 | ovmpt2df.6 |
. . 3
| |
| 6 | 4, 5 | nfim 1504 |
. 2
|
| 7 | ovmpt2df.1 |
. . . 4
| |
| 8 | elex 2610 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | isset 2605 |
. . 3
| |
| 11 | 9, 10 | sylib 120 |
. 2
|
| 12 | ovmpt2df.2 |
. . . . 5
| |
| 13 | elex 2610 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | isset 2605 |
. . . 4
| |
| 16 | 14, 15 | sylib 120 |
. . 3
|
| 17 | nfv 1461 |
. . . 4
| |
| 18 | ovmpt2df.7 |
. . . . . 6
| |
| 19 | nfmpt22 5592 |
. . . . . 6
| |
| 20 | 18, 19 | nfeq 2226 |
. . . . 5
|
| 21 | ovmpt2df.8 |
. . . . 5
| |
| 22 | 20, 21 | nfim 1504 |
. . . 4
|
| 23 | oveq 5538 |
. . . . . 6
| |
| 24 | simprl 497 |
. . . . . . . . . 10
| |
| 25 | simprr 498 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | oveq12d 5550 |
. . . . . . . . 9
|
| 27 | 7 | adantr 270 |
. . . . . . . . . . 11
|
| 28 | 24, 27 | eqeltrd 2155 |
. . . . . . . . . 10
|
| 29 | 12 | adantrr 462 |
. . . . . . . . . . 11
|
| 30 | 25, 29 | eqeltrd 2155 |
. . . . . . . . . 10
|
| 31 | ovmpt2df.3 |
. . . . . . . . . 10
| |
| 32 | eqid 2081 |
. . . . . . . . . . 11
| |
| 33 | 32 | ovmpt4g 5643 |
. . . . . . . . . 10
|
| 34 | 28, 30, 31, 33 | syl3anc 1169 |
. . . . . . . . 9
|
| 35 | 26, 34 | eqtr3d 2115 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2092 |
. . . . . . 7
|
| 37 | ovmpt2df.4 |
. . . . . . 7
| |
| 38 | 36, 37 | sylbid 148 |
. . . . . 6
|
| 39 | 23, 38 | syl5 32 |
. . . . 5
|
| 40 | 39 | expr 367 |
. . . 4
|
| 41 | 17, 22, 40 | exlimd 1528 |
. . 3
|
| 42 | 16, 41 | mpd 13 |
. 2
|
| 43 | 1, 6, 11, 42 | exlimdd 1793 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: ovmpt2dv 5653 ovmpt2dv2 5654 |
| Copyright terms: Public domain | W3C validator |