ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg Unicode version

Theorem ovtposg 5897
Description: The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )

Proof of Theorem ovtposg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . . 5  |-  y  e. 
_V
2 brtposg 5892 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  y  e.  _V )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
31, 2mp3an3 1257 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
43iotabidv 4908 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( iota y <. A ,  B >.tpos  F y )  =  ( iota y <. B ,  A >. F y ) )
5 df-fv 4930 . . 3  |-  (tpos  F `  <. A ,  B >. )  =  ( iota y <. A ,  B >.tpos  F y )
6 df-fv 4930 . . 3  |-  ( F `
 <. B ,  A >. )  =  ( iota y <. B ,  A >. F y )
74, 5, 63eqtr4g 2138 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (tpos  F `  <. A ,  B >. )  =  ( F `  <. B ,  A >. ) )
8 df-ov 5535 . 2  |-  ( Atpos 
F B )  =  (tpos  F `  <. A ,  B >. )
9 df-ov 5535 . 2  |-  ( B F A )  =  ( F `  <. B ,  A >. )
107, 8, 93eqtr4g 2138 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   <.cop 3401   class class class wbr 3785   iotacio 4885   ` cfv 4922  (class class class)co 5532  tpos ctpos 5882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-ov 5535  df-tpos 5883
This theorem is referenced by:  tpossym  5914
  Copyright terms: Public domain W3C validator