ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre Unicode version

Theorem pnfnre 7160
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre  |- +oo  e/  RR

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 7097 . . . . . 6  |-  CC  e.  _V
21uniex 4192 . . . . 5  |-  U. CC  e.  _V
3 pwuninel2 5920 . . . . 5  |-  ( U. CC  e.  _V  ->  -.  ~P U. CC  e.  CC )
42, 3ax-mp 7 . . . 4  |-  -.  ~P U. CC  e.  CC
5 df-pnf 7155 . . . . 5  |- +oo  =  ~P U. CC
65eleq1i 2144 . . . 4  |-  ( +oo  e.  CC  <->  ~P U. CC  e.  CC )
74, 6mtbir 628 . . 3  |-  -. +oo  e.  CC
8 recn 7106 . . 3  |-  ( +oo  e.  RR  -> +oo  e.  CC )
97, 8mto 620 . 2  |-  -. +oo  e.  RR
109nelir 2342 1  |- +oo  e/  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1433    e/ wnel 2339   _Vcvv 2601   ~Pcpw 3382   U.cuni 3601   CCcc 6979   RRcr 6980   +oocpnf 7150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-un 4188  ax-cnex 7067  ax-resscn 7068
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-nel 2340  df-rex 2354  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-uni 3602  df-pnf 7155
This theorem is referenced by:  renepnf  7166  xrltnr  8855  pnfnlt  8862
  Copyright terms: Public domain W3C validator