| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrltnr | Unicode version | ||
| Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 8850 |
. 2
| |
| 2 | ltnr 7188 |
. . 3
| |
| 3 | pnfnre 7160 |
. . . . . . . . . 10
| |
| 4 | 3 | neli 2341 |
. . . . . . . . 9
|
| 5 | 4 | intnan 871 |
. . . . . . . 8
|
| 6 | 5 | intnanr 872 |
. . . . . . 7
|
| 7 | pnfnemnf 8851 |
. . . . . . . . 9
| |
| 8 | 7 | neii 2247 |
. . . . . . . 8
|
| 9 | 8 | intnanr 872 |
. . . . . . 7
|
| 10 | 6, 9 | pm3.2ni 759 |
. . . . . 6
|
| 11 | 4 | intnanr 872 |
. . . . . . 7
|
| 12 | 4 | intnan 871 |
. . . . . . 7
|
| 13 | 11, 12 | pm3.2ni 759 |
. . . . . 6
|
| 14 | 10, 13 | pm3.2ni 759 |
. . . . 5
|
| 15 | pnfxr 8846 |
. . . . . 6
| |
| 16 | ltxr 8849 |
. . . . . 6
| |
| 17 | 15, 15, 16 | mp2an 416 |
. . . . 5
|
| 18 | 14, 17 | mtbir 628 |
. . . 4
|
| 19 | breq12 3790 |
. . . . 5
| |
| 20 | 19 | anidms 389 |
. . . 4
|
| 21 | 18, 20 | mtbiri 632 |
. . 3
|
| 22 | mnfnre 7161 |
. . . . . . . . . 10
| |
| 23 | 22 | neli 2341 |
. . . . . . . . 9
|
| 24 | 23 | intnan 871 |
. . . . . . . 8
|
| 25 | 24 | intnanr 872 |
. . . . . . 7
|
| 26 | 7 | nesymi 2291 |
. . . . . . . 8
|
| 27 | 26 | intnan 871 |
. . . . . . 7
|
| 28 | 25, 27 | pm3.2ni 759 |
. . . . . 6
|
| 29 | 23 | intnanr 872 |
. . . . . . 7
|
| 30 | 23 | intnan 871 |
. . . . . . 7
|
| 31 | 29, 30 | pm3.2ni 759 |
. . . . . 6
|
| 32 | 28, 31 | pm3.2ni 759 |
. . . . 5
|
| 33 | mnfxr 8848 |
. . . . . 6
| |
| 34 | ltxr 8849 |
. . . . . 6
| |
| 35 | 33, 33, 34 | mp2an 416 |
. . . . 5
|
| 36 | 32, 35 | mtbir 628 |
. . . 4
|
| 37 | breq12 3790 |
. . . . 5
| |
| 38 | 37 | anidms 389 |
. . . 4
|
| 39 | 36, 38 | mtbiri 632 |
. . 3
|
| 40 | 2, 21, 39 | 3jaoi 1234 |
. 2
|
| 41 | 1, 40 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 |
| This theorem is referenced by: xrltnsym 8868 xrltso 8871 xrlttri3 8872 xrleid 8874 xrltne 8883 nltpnft 8884 ngtmnft 8885 xrrebnd 8886 lbioog 8936 ubioog 8937 |
| Copyright terms: Public domain | W3C validator |