| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pofun | Unicode version | ||
| Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| pofun.1 |
|
| pofun.2 |
|
| Ref | Expression |
|---|---|
| pofun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v 2938 |
. . . . . . 7
| |
| 2 | 1 | nfel1 2229 |
. . . . . 6
|
| 3 | csbeq1a 2916 |
. . . . . . 7
| |
| 4 | 3 | eleq1d 2147 |
. . . . . 6
|
| 5 | 2, 4 | rspc 2695 |
. . . . 5
|
| 6 | 5 | impcom 123 |
. . . 4
|
| 7 | poirr 4062 |
. . . . 5
| |
| 8 | df-br 3786 |
. . . . . 6
| |
| 9 | pofun.1 |
. . . . . . 7
| |
| 10 | 9 | eleq2i 2145 |
. . . . . 6
|
| 11 | nfcv 2219 |
. . . . . . . 8
| |
| 12 | nfcv 2219 |
. . . . . . . 8
| |
| 13 | 1, 11, 12 | nfbr 3829 |
. . . . . . 7
|
| 14 | nfv 1461 |
. . . . . . 7
| |
| 15 | vex 2604 |
. . . . . . 7
| |
| 16 | 3 | breq1d 3795 |
. . . . . . 7
|
| 17 | vex 2604 |
. . . . . . . . . 10
| |
| 18 | pofun.2 |
. . . . . . . . . 10
| |
| 19 | 17, 12, 18 | csbief 2947 |
. . . . . . . . 9
|
| 20 | csbeq1 2911 |
. . . . . . . . 9
| |
| 21 | 19, 20 | syl5eqr 2127 |
. . . . . . . 8
|
| 22 | 21 | breq2d 3797 |
. . . . . . 7
|
| 23 | 13, 14, 15, 15, 16, 22 | opelopabf 4029 |
. . . . . 6
|
| 24 | 8, 10, 23 | 3bitri 204 |
. . . . 5
|
| 25 | 7, 24 | sylnibr 634 |
. . . 4
|
| 26 | 6, 25 | sylan2 280 |
. . 3
|
| 27 | 26 | anassrs 392 |
. 2
|
| 28 | 5 | com12 30 |
. . . . . 6
|
| 29 | nfcsb1v 2938 |
. . . . . . . . 9
| |
| 30 | 29 | nfel1 2229 |
. . . . . . . 8
|
| 31 | csbeq1a 2916 |
. . . . . . . . 9
| |
| 32 | 31 | eleq1d 2147 |
. . . . . . . 8
|
| 33 | 30, 32 | rspc 2695 |
. . . . . . 7
|
| 34 | 33 | com12 30 |
. . . . . 6
|
| 35 | nfcsb1v 2938 |
. . . . . . . . 9
| |
| 36 | 35 | nfel1 2229 |
. . . . . . . 8
|
| 37 | csbeq1a 2916 |
. . . . . . . . 9
| |
| 38 | 37 | eleq1d 2147 |
. . . . . . . 8
|
| 39 | 36, 38 | rspc 2695 |
. . . . . . 7
|
| 40 | 39 | com12 30 |
. . . . . 6
|
| 41 | 28, 34, 40 | 3anim123d 1250 |
. . . . 5
|
| 42 | 41 | imp 122 |
. . . 4
|
| 43 | 42 | adantll 459 |
. . 3
|
| 44 | potr 4063 |
. . . . 5
| |
| 45 | df-br 3786 |
. . . . . . 7
| |
| 46 | 9 | eleq2i 2145 |
. . . . . . 7
|
| 47 | nfv 1461 |
. . . . . . . 8
| |
| 48 | vex 2604 |
. . . . . . . 8
| |
| 49 | csbeq1 2911 |
. . . . . . . . . 10
| |
| 50 | 19, 49 | syl5eqr 2127 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 3797 |
. . . . . . . 8
|
| 52 | 13, 47, 15, 48, 16, 51 | opelopabf 4029 |
. . . . . . 7
|
| 53 | 45, 46, 52 | 3bitri 204 |
. . . . . 6
|
| 54 | df-br 3786 |
. . . . . . 7
| |
| 55 | 9 | eleq2i 2145 |
. . . . . . 7
|
| 56 | 29, 11, 12 | nfbr 3829 |
. . . . . . . 8
|
| 57 | nfv 1461 |
. . . . . . . 8
| |
| 58 | vex 2604 |
. . . . . . . 8
| |
| 59 | 31 | breq1d 3795 |
. . . . . . . 8
|
| 60 | csbeq1 2911 |
. . . . . . . . . 10
| |
| 61 | 19, 60 | syl5eqr 2127 |
. . . . . . . . 9
|
| 62 | 61 | breq2d 3797 |
. . . . . . . 8
|
| 63 | 56, 57, 48, 58, 59, 62 | opelopabf 4029 |
. . . . . . 7
|
| 64 | 54, 55, 63 | 3bitri 204 |
. . . . . 6
|
| 65 | 53, 64 | anbi12i 447 |
. . . . 5
|
| 66 | df-br 3786 |
. . . . . 6
| |
| 67 | 9 | eleq2i 2145 |
. . . . . 6
|
| 68 | nfv 1461 |
. . . . . . 7
| |
| 69 | 61 | breq2d 3797 |
. . . . . . 7
|
| 70 | 13, 68, 15, 58, 16, 69 | opelopabf 4029 |
. . . . . 6
|
| 71 | 66, 67, 70 | 3bitri 204 |
. . . . 5
|
| 72 | 44, 65, 71 | 3imtr4g 203 |
. . . 4
|
| 73 | 72 | adantlr 460 |
. . 3
|
| 74 | 43, 73 | syldan 276 |
. 2
|
| 75 | 27, 74 | ispod 4059 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-po 4051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |